Prime Recipient: Nexceris, LLC PI: Neil J. Kidner **Sub-Recipients:** N/A Location: Lewis Center, OH ### **Phase I SBIR Project** **DOE:** \$206,500 **Cost Share:** N/A **Total:** \$206,500 ## **Objectives** Advancing the technology product readiness by systematic reduction of technical and commercial risk - Technical risk through structured DFMEA - Implement cost-reduction opportunities - Define manufacturing cost and scale-up roadmap 250-Wh module demonstration of key technology benefits ## **Relevance and Outcomes/Impact** Enhance the economic and energy security of the U.S - Creation of a new battery manufacturing infrastructure - Supported by a secure domestic supply-chain #### Problem - ▶ To balance intermittent renewables with baseload assets and maintain grid stability, a massive expansion of long-duration (6-24 hours) energy storage is required. - Li-ion batteries address shorter duration storage but become cost-prohibitive for longer duration and are inherently unsafe. #### Solution - Nexceris is developing a new energy storage technology that promises: - ▶ Low-cost - ▶ Inherently Safe - ► Intraday duration energy storage ### Nexceris is engaged in technology development throughout the energy storage spectrum Short-term (< 4h) Seasonal storage Voice of Customer Materials Synthesis Ceramic Fabrication Manufacturing | Value Proposition Element | Description | Value Impact | |-------------------------------|---|---| | Safety | No risk of fireFail safe technologyNo risk of propagation | Enables technology to be used in locations where Li-ion is considered too risky (i.e., urban environments) Reduces siting and permitting risk / project execution risk Reduces balance-of-system and potential insurance costs | | Enhanced Operability | Longer duration (6-24hrs) Greater ambient operating range More flexible than Li-ion Greater stability Improved asset visibility | Longer duration expands use-cases Greater ambient temperature operating range potentially reduces
HVAC and O&M expense and allows more flexible operations | | Purpose-built Design | Resilient designModularityScalable size | Design flexibility allows freedom in tailoring storage assets to
specific applications Hardened system more resilient against physical attack | | Supply Chain / Sustainability | Abundant raw materials Recyclability reduces end-of-life costs No critical materials | Abundant raw materials reduce supply chain risk and may lower cost long-term U.S. manufacture reduces risk of supply chain interruption Aligns with corporate, state sustainability goals potentially lower end-of-life / decommissioning costs | | Task | Objective | Milestones | |--|---|---| | Task 1 Value-Proposition Definition | Understand unmet market needs Establish narrative for technology to meet these needs Create commercial pull | Value-proposition defined, guided by value-chain Cell design review completed Commitment from at least one industrial partner to support on-site demonstration in Phase 2 | | Task 2 Technical Risk Reduction | Drive out technical risk (> 50 % reduction in RPN achieved Reproducible cell established | Define cell architecture Down-select electrolyte membrane approach | | Task 3 Cost Reduction Implementation | Roadmap <\$50/kWh defined | Manufacturing cost model/roadmap established Evaluation of lower-cost cell-chemistry completed Achieve 50 % lower cell cost | | Task 4 250 Wh Module Demonstration | Demonstrate key technology benefits | Thermal management of 20-cell pack design validated Successful completion of 250 Wh stand-alone module demonstration | Nexceris is always looking for value-chain partners to help better understand the market, technology development and commercialization Dr. Neil Kidner Director, Battery Business Unit Nexceris LLC 404 Enterprise Drive, Lewis Center, OH, 43035 (614) 802-7105 n.kidner@nexceris.com